
Advances in Science, Technology and Engineering Systems Journal
Vol. 2, No. 6, 162-174 (2017)

www.astesj.com

ASTES Journal
ISSN: 2415-6698

Mealy-to-Moore Transformation - A state stable design of automata
Mustafa Oezguel*, Florian Deeg, Sebastian M. Sattler

Chair of Reliable Circuits and Systems, Friedrich-Alexander-Universität Erlangenen-Nürnberg, Paul-Gordan-Str. 5,
91052 Erlangen, Germany

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 27 October, 2017
Accepted: 02 December, 2017
Online: 10 December, 2017

The paper shows a method of transforming an asynchronously
feedbacked Mealy machine into a Moore machine. The transformation is
done in dual-rail logic under the use of the RS-buffer. The transformed
machine stabilizes itself and is safe to use. The transformation is
visualized via KV-diagrams and calculated with formulas. We will present
three use-cases for a better understanding. To underpin the stated
transformation a simulation is also presented.

Keywords :
Asynchronous Feedback
Functional Safety
Stabilization
Hazard-free
Race-free
Parallel de-composition
Dual-rail

1 Introduction

A Synchronous circuits entail several benefits. Firstly per-
formance advantages, e.g. faster system perfomance, no
clock synchronization, fewer power consumption and fewer
electromagnetic emission. Secondly asynchronous circuits
also have safety advantages, e.q. no clock skew. Asyn-
chronous circuits can also lead to simplicity, by connecting
different parts modularly [1, 2]. On the other hand asyn-
chronous circuits provide risks, such as faults like hazards,
glitches and so on [3]. Therefore it is very important to
design asynchronous circuits correctly, especially in safety
critical applications such as in automotive, where human
lives are at stake. To prevent faults like hazards, a mealy-
to-moore transformation will be presented, which creates
a function stable asynchronous machine. The Mealy ma-
chine with the state transfer function δ and the output func-
tion λ , see figure 1 be given. Each Mealy machine can
be transformed into an equivalent Moore machine [3] for
example by increasing the arity of δ by |x| and coding it
with x, z′ = (z,x) with δ ′(z′,x) 7→ (δ (z,x),x), and the out-
put function is only dependent on the new state variable z′

with µ : (z′) 7→ µ(z′).
By comparing the two machines the pros and cons can be
shown. Therefore the idea of transforming the machines
into each other to profit from the benefits of both is obvious.
Mealy machines have the advantage of requiring less states
since one state can produce a number of different outputs
in combination with the input. A Moore machine’s state on
the other hand only produces one output. A Mealy machine

is also faster by reacting directly to the input. This feature
however is not always wanted, since it can lead to undesired
outputs (e.g. hazards, glitches) when the input is variable.
A Moore machine is more stable in this regard, since it only
indirectly reacts to input changes. The output only changes
when transferring into the next state. Transforming a Mealy
machine into a Moore machine is therefore useful in case a
direct dependence on the input is to be avoided [2].
In the paper the transformation of a Mealy machine into a
Moore machine is presented. The machine will be designed
under the use of dual-rail logic and the RS-buffer, and will
stabilize itself. Firstly the transformation is made by break-
ing the feedback up and nesting it in the RS-buffer, secondly
by encoding the inputs as states, so that the output function
is only dependent on pseudo states. With the method pre-
sented in this article, function stable sequential circuit parts
can be seen as combinational logic and moved over other
blocks at will. With this method, individual machines can
be strung together to realize complex circuits for safety rel-
evant applications.

2 Theory

This paper describes the underlying theory of the transfor-
mation and provides an illustrative example.

Figure 1 shows a fully asynchronous Mealy machine.
The branches entering a node in the graph should end re-
flexively, so that only transient states are allowed which are
conscious and triggered from the outside [2]. To consider
all branches of the Mealy machine as locally reflexively

*Corresponding Author: Mustafa Oezguel, mustafa.oezguel@fau.de

www.astesj.com 162

https://dx.doi.org/10.25046/aj020621

http://www.astesj.com
http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

concluded, the feedback should be moved over λ , making
the output y the feedback. In order to set the correct state z
for the transfer function δ , a function λ−1 is realized. This
function generates the reduced state z from the feedback y.
This equivalent transformation is outlined in figure 2.

δ

λ
z

x
x

y

Figure 1: Fully asynchronous Mealy machine

λ -1

δ

λ

z
z

x
x

x

y

Figure 2: Equivalent transformation

The following applies:

δ (z,x) = z

δ
(
λ

-1(y,x),x
)
= λ

-1(y,x)

λ
(
δ
(
λ

-1(y,x),x
)
,x
)
= y

mit λ
(
λ

-1(y,x),x
)
= y

The next stage of transformation shows at first sight no
feedback. Only the RS-buffer, which is in δ , has a nested
feedback. This transformation is outlined in figure 3. Tran-
sient states can be triggered via the input, while state stable
states are being held via the RS-buffer. In order to set the
correct state z to µ , the function δ must be well designed,
which will be shown in the following sections.

δ µ

z

x

x

y

Figure 3: Moore transformation

The following applies:

δ (z,x) = z

µ(z,x) = y

2.1 Dual-rail logic

For the implementation in dual-rail logic [4], the fully asyn-
chronous circuit from figure 1 will be divided in the 1- and
0-share. This is done by partitioning the state transfer func-
tion and the output function, see figure 4.

δ z

δz

+

λ y

λy

+

y
z

z = (z,z)

z
y

x

x

x

x

(y,y) = y

Figure 4: Mealy realized in dual-rail logic

The functions δ and λ are each w.l.o.g. realized in two
blocks δ = (δz,δ z) and λ = (λz,λ z). In order to guaran-
tee this secure dual rail structure, RS-buffers are used. The
mode of operation corresponds in a certain manner to the C-
element [4, 5]. The function δ of figure 3 will be designed
by appropriate coding according to the RS-buffer, showing
a general structure as outlined in figure 5.

δ z

δ z

+

+

C∨D

A∨B

+

z

x

x

y

Figure 5: Transformed Moore

The stabilized 1-states, ∆z
c sz, are transformed into

1-outputs, Λy
c sy. The corresponding Venn diagram of

the stabilized 1-states in 1-outputs can be seen in figure
6. 1-states that appear as 0-outputs are declared as Λz, 0-
states which appear as 1-outputs are declared as Λz. The
1-partition is composed of:

Λy
c sλy(δ z)+λy(δ z)+λ y(δ z)

www.astesj.com 163

http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

Λy e uy

∆z
e uz

Λz

Λz

Λz

Figure 6: Venn diagram of 1-states in 1-outputs

y u eΛy

∆z
e uz

Λz

Λz

Λz

Figure 7: Venn diagram of 0-states in 0-outputs

The stabilized 0-states, ∆z
c sz, are transformed into

0-outputs, Λy
c sy. The corresponding Venn diagram of

the 0-states in 0-outputs is shown in figure 7. 0-states which
appear as 1-outputs are declared as Λz, 1-states which ap-
pear as 0-outputs are declared as Λz. The 0-partition is com-
posed of:

Λy
c sλ y(δ z)+λ y(δ z)+λy(δ z)

To understand the coding, first the RS-buffer has to be
understood.

2.2 RS-Buffer

The RS-Buffer used and its circuit symbol are represented
in figure 8 and 9 and

VDD

VDD

M

L

L

M

VDD

S

R

B

Figure 8: RS-Buffer (schematic)

+ B

S

R

Figure 9: Circuit symbol of the used RS-Buffer

its truth table is specified in table 1.

R 0 0 1 1
S 0 1 0 1
B B 1 0 B

Table 1: Truth table of the RS-Buffer

The RS-buffer is used to synchronize a dual-rail sig-
nal by only letting a state tranfer happen, if both incoming
signals are disjoint (how it is desired) to each other. This
means that there is no overlaying of signal, which could
lead to fatal faults. The RS-buffer consists of the tri-state
driver, which is the first state and the second stage the so
called babysitter. The driving structure now provides 3
functions. Firstly the setting signal, which means the out-
put is in the logical 1-state. Secondly the resetting signal,
which means the output is in logical 0-state and least the
hold state which holds the last state at the output by keep-
ing the signal in the babysitter and having a high impedance
state at the tri state. The babysitter consists of two comple-
mentary loops. The formula for the output B is therefore
B := R(B∨S)∨S(B∨R) = RS∨RB∨SB.

2.3 Design of the reduced state transfer func-
tion δ

As you can see the RS-buffer is coded via a 3-partitioning.
There is the setting signal S=[1], the resetting signal R=[1]
and the hold signal RS=[00]∨[11]. The state transfer func-
tion of an automaton can in turn be split in 4 parts. Firstly

www.astesj.com 164

http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

thetransient1-share, that means independent of the state
the next state will be at logical 1, secondly the transient
0-share, that means output at logical 0 independent of the
state, thirdly the state stable share of the state transfer func-
tion, that means the share, which is at constant input de-
pendent on the value of the last state and the state instable
state, which means a permanent change of the state at con-
stant input, see figure 10. The resulting 3 parts, which are
left, can now be easily compared to the 3-partitition of the
RS-buffer. The transient 1-share δ z is realized by the set-
ting signal of the RS-buffer, similar the transient 0-share δ z
is realized by the resetting signal and the state stable share
is realized by the hold signal of the RS-buffer.

δ x0

x1

z

1 0 0 1

1 0 1 0

0 1 23

4 5 67

Figure 10: Parts of a state transfer function

To understand the transformation, first a few composi-
tions must be defined:

zδ (z,x) = δ (z = 1,x)

zδ (z,x) = δ (z = 0,x)

zδ (z,x) = δ (z = 1,x)

zδ (z,x) = δ (z = 0,x)

This work only concentrates on function stable machines,
so that state instable parts are not allowed. State instable
parts can be deduced via

zδ ∧ zδ

Functions must not exhibit these parts. The other parts can
be deduced by the following expressions

transient 1 : δ z = zδ ∧ zδ

transient 0 : δ z = zδ ∧ zδ

state stable : zδ ∧ zδ

This leads to the genereal formula for δ i for n states:

δ zi
= δ zi

+¬δ zi

= (ziδzi ∧ ziδzi)+¬(ziδ zi
∧ ziδ zi

)

= (δzi(zi = 1,x)∧δzi(zi = 0,x))

+¬(δ zi(zi = 1,x)∧δ zi(zi = 0,x))

with i = 0...n−1

2.4 Design of the output function

The detailed description of the Venn-diagrams given in fig-
ure 11 and 12 is reported in [6].

Λy e uy

∆z
e uz

B

A

Figure 11: Venn-diagram of 1-states in 1-outputs

y u eΛy

∆z
e uz

C

D

Figure 12: Venn-diagram of 0-states in 0-outputs

The coding of the parts A, B, C and D of the Venn-
diagrams, see figure 11 and figure 12, is as follows:

(z,y)

(11) = A = δz∧λy

(01) = B = δ z∧λy

(10) =C = δz∧λ y

(00) = D = δ z∧λ y

The dual-rails y and y for y are now:

y = A∨B

y =C∨D

y = y+¬y

The seperate parts of the machine have now been deduced
and can simply be strung together to get the form of figure
5.

www.astesj.com 165

http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

3 Use-Case

To get a better insight, three examples will be presented.

3.1 1-dimensional example

For x=(x1,x0), y=(y) and z=(z) the transformation of the
Mealy machine (X ,Y,Z,δ ,λ) with the state transfer func-
tion and output function

δ (z,x) = x1x0∨ zx1x0 λ (z,x) = x1x0∨ zx1

will be executed. The automaton before the transformation
can be seen in figure 13.

∧

∧

∨

∧

∧

∨

x0

x1

x0

x1

x1

x1

x0

y

Figure 13: Mealy machine before the transformation

3.1.1 Design of δ

The KV-diagram of the state transfer function can be seen
in figure 14.

δ x0

x1

z

0 0 1 0

0 1 1 0

0 1 23

4 5 67

Figure 14: The state transfer function

To code the RS-buffer correctly, firstly the KV-diagram will
be compacted, see figure 15.

δ x0

x1

0 z 1 0
0 1 23

Figure 15: Compacted KV-diagram of δ

The parts of the state transfer function can easily be seen
and the KV-diagrams for δ z and δ z can be deployed, see
figure 16. For δ z 0 is coded as 1 and 1 is coded as 0 respec-
tively, because of the dual-rail structure.

δ z x0

x1

∗ 0 1 ∗
0 1 23

δ z x0

x1

1 0 ∗ 1
0 1 23

Figure 16: δ z and δ z

For the next steps of the transformation, first the comple-
ment of δ has to be calculated:

δ (z,x) = zx1∨ x0

The parts of the state transfer function are:

zδ = δ (z = 1,x) = x0

zδ = δ (z = 0,x) = x1x0

zδ = δ (z = 1,x) = x0

zδ = δ (z = 0,x) = x1∨ x0

It has to be checked, if there are any instable parts:

zδz∧ zδ z = x1x0∧ x0 = 0

zδ ∧ zδ is 0 means the function has no instable parts.
The functions δ z and δ z can now be calculated via

δ z = zδz∧ zδz = x1x0

δ z = zδ z∧ zδ z = x0

The coding for δ of the RS-buffer is as follows:

(r s)

Set:(∗1) = x1x0 (.transient1-share) = δ z

Reset:(1∗) = x0 (transient 0-share) = δ z

Hold:(∗∗) = x1x0 (state stable share)

Now δ can be derived:

δ = δ z +¬δ z

= x1x0 +¬(x0)

3.1.2 Design of λ

λ x0

x1

z

0 1 0 0

1 1 0 0

0 1 23

4 5 67

Figure 17: Output function λ

The stabilized state transfer function has now been de-
signed, now the output function must be designed. There-
fore the output function has to be layed over the state trans-
fer function and the parts have to be specified:

www.astesj.com 166

http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

λ x0

x1

z

D B C D

B A C D

0 1 23

4 5 67

Figure 18: Parts of the output function

The parts are:

A(z,x) = zx1x0

B(z,x) = zx1x0∨ zx1x0

C(z,x) = x1x0

D(z,x) = x1x0∨ zx0

This leads to the output function:

y = A∨B = x1x0∨ zx1

y =C∨D = x1∨ zx0

y = y+¬y = x1x0∨ zx1 +¬(x1∨ zx0)

The resulting automaton has the form of figure 19 with the
determined functions y = A∨B and y =C∨D.

∧

+

+

C∨D

A∨B

+

+

z µ

x0

x0

δ

x1

x1

y

Figure 19: Transformed Moore

The truth table of the automaton:

z x1 x0 δ δ z δ z δ λ A B C D A∨B C∨D y
0 0 0 0 0 ∗ 1 0 0 ∗ ∗ ∗ 1 ∗ 1 0
1 0 0 1 0 ∗ ∗ 0 1 ∗ 1 ∗ ∗ 1 ∗ 1
2 0 1 0 0 ∗ 1 0 0 ∗ ∗ ∗ 1 ∗ 1 0
3 0 1 1 1 1 ∗ 1 0 ∗ ∗ 1 ∗ ∗ 1 0
4 1 0 0 0 ∗ 1 0 1 ∗ 1 ∗ ∗ 1 ∗ 1
5 1 0 1 1 ∗ ∗ 1 1 1 ∗ ∗ ∗ 1 ∗ 1
6 1 1 0 0 ∗ 1 0 0 ∗ ∗ ∗ 1 ∗ 1 0
7 1 1 1 1 1 ∗ 1 0 ∗ ∗ 1 ∗ ∗ 1 0

Table 2: Partial truth table of the resulting automaton

3.2 2-dimensional example
For x = (x1,x0), y = (y) and z = (z1,z0) the transformation
of the Mealy machine (X ,Y,Z,δ ,λ) with the state transfer
functions and output function

δz0(z,x) = x0∨ z1x1 δz1(z,x) = z0x1x0∨ z1x1x0

λ (z,x) = z1x1∨ z0x1x0

will be executed. The machine before the transformation is
outlined in figure 20.

∧

∧

∧

∨

∨

∧

∧

∨

z0

z1

x1

x0

x1

x0

x0

x1

x1

x0

x1

y

Figure 20: Automaton before the transformation

3.2.1 Design of δ z0

δz0 x0

x1

z0

z1

1 0 0 1

1 0 0 1

1 0 1 1

1 0 1 1

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

Figure 21: KV-diagram of δz0

The KV-diagram of figure 21 will be lossless compacted
given by the pointers in the diagram to the diagram of fig-
ure 22.

δz0 x0

x1

z1

1 0 0 1

1 0 1 1

0 1 23

4 5 67

Figure 22: compacted KV-diagram of δz0

With the compacted KV-diagram the RS-buffer for δz0

can be coded by specifying the functions δ z0
and δ z0

, see

www.astesj.com 167

http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

figure 23. The partial function δ z0
delivers the 1’s of δz0

as 1’s, while δ zz0
delivers the 0’s of δz0 as 1’s. In this state

transfer function, there is no state stable part only transient
parts. Making the stable δ z0

a normal dual-rail structure.

δ z0 x0

x1

z1

1 ∗ ∗ 1

1 ∗ 1 1

0 1 23

4 5 67

δ z0 x0

x1

z1

∗ 1 1 ∗

∗ 1 ∗ ∗

0 1 23

4 5 67

Figure 23: δ z0
and δ z0

State instable parts are not allowed in the state transfer
function:

z0δz0 ∧ z0δ z0 = (x0∨ z1x1)∧ (z1x0∨ x1x0) = 0

Now the resulting z0 can be calculated:

δ z0
(z,x) = z0δz0 ∧ z0 δz0 = x0∨ z1x1

δ z0
(z,x) = z0δ z0 ∧ z0δ z0 = z1x0∨ x1x0

z0 : = δ z0
+¬(δ z0

)

z0 : = x0∨ z1x1 +¬(x1x0∨ z1x1)

3.2.2 Design of δ z1

δz1 x0

x1

z0

z1

0 0 0 0

0 0 1 0

0 0 1 1

0 0 0 1

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

Figure 24: KV-diagram of δz1

For δ z1
the same approach applies. First the KV-diagram,

see figure 24, will be compacted:

δz1 x0

x1

z0

0 0 0 z1

0 0 1 z1

0 1 23

4 5 67

Figure 25: compacted KV-diagram of δz1

Now the functions δ z1
and δ z1

can be deduced:

δ z1 x0

x1

z0

∗ ∗ ∗ 0

∗ ∗ 1 0

0 1 23

4 5 67

δ z1 x0

x1

z0

1 1 1 0

1 1 ∗ 0

0 1 23

4 5 67

Figure 26: KV-diagrams for δ z1
and δ z1

First δz1 is checked for instable parts:

z1δz1 ∧ z1δ z1 = z0x1x0∧ (z0x0∨ x1) = 0

No instable parts, so the RS-buffer can be coded for δz1 by
determining the functions δ z1

and δ z1
:

δ z1
(z,x) = z1δz1 ∧ z1 δz1 = z0x1x0

δ z1
(z,x) = z1δ z1 ∧ z1δ z1 = x1∨ z0x0

z1 : = δ z1
+¬(δ z1

)

z1 : = z0x1x0 +¬(x1∨ z0x0)

3.2.3 Design of λ

The KV-diagram of λ can be seen in 27. Because of the
two-dimensional state, λ has to be divided into eight parts.
They exist as follows:

(z1,z0,y) (z1,z0,y)

(001) = A (001) = E

(011) = B (011) = F

(101) =C (101) = G

(111) = D (111) = H

λ x0

x1

z0

z1

0 0 0 0

1 0 0 0

1 0 1 1

0 0 1 1

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

Figure 27: KV-diagram of λ

The parts of λ are set up in the KV-diagram, see figure
28.

www.astesj.com 168

http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

λ x0

x1

z0

z1

F E E F

B E G F

B E D D

F E B D

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

Figure 28: Parts of λ

The output functions y and y can be inferred from this:

y = A∨B∨C∨D

= z0x1x0∨ z1z0x1x0∨ z1x1x0∨ z1z0x1

= z1x1∨ z0x1x0

y = E ∨F ∨G∨H

= x1x0∨ z1z0x0∨ z0x0x1∨ z1x1x0∨ z1z0x0∨ z1z0x1x0

= x1x0∨ z1x1∨ z0x1

The resulting automaton can be seen in 30. As you can see
in table 3, situation 7 leads to a cycle, by stepping to config-
uration 11, which steps back to configuration 7, and so on.
So to have a state stable design in multistate machines, it is
also necessary to regard the transitions between the states.
A rule has to be found, to filter these race conditions. In
the following transformation the auomaton of subsection b
is stabilized, by changing δz1 .

z1 z0 x1 x0 δz1 δz0 δ z1
δ z1

δ z1
δ z0

δ z0
δ z0

λ A B C D E F G H y y y
0 0 0 0 0 0 1 ∗ 1 0 1 ∗ 1 0 ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 0
1 0 0 0 1 0 0 ∗ 1 0 ∗ 1 0 0 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 0
2 0 0 1 0 0 1 ∗ ∗ 0 1 ∗ 1 0 ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 0
3 0 0 1 1 0 0 ∗ 1 0 ∗ 1 0 0 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 0
4 0 1 0 0 0 1 ∗ 1 0 1 ∗ 1 1 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ 1
5 0 1 0 1 0 0 ∗ 1 0 ∗ 1 0 0 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 0
6 0 1 1 0 0 1 ∗ ∗ 0 1 ∗ 1 0 ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 0
7 0 1 1 1 1 0 1 ∗ 1 ∗ 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ 1 0
8 1 0 0 0 0 1 ∗ 1 0 1 ∗ 1 0 ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 0
9 1 0 0 1 0 0 ∗ 1 0 ∗ 1 0 0 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 0
10 1 0 1 0 1 1 ∗ ∗ 1 1 ∗ 1 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 ∗ 1
11 1 0 1 1 0 1 ∗ 1 0 1 ∗ 1 1 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ 1
12 1 1 0 0 0 1 ∗ 1 0 1 ∗ 1 1 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ 1
13 1 1 0 1 0 0 ∗ 1 0 ∗ 1 0 0 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 0
14 1 1 1 0 1 1 ∗ ∗ 1 1 ∗ 1 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 ∗ 1
15 1 1 1 1 1 1 1 ∗ 1 1 ∗ 1 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 ∗ 1

Table 3: Truth table of the transformed automaton

3.3 Stable 2-dimensional example
The state transfer function δz1 has now been changed, to
make it a stable automaton. For x = (x1,x0), y = (y)
and z = (z1,z0) the transformation of the Mealy machine
(X ,Y,Z,δ ,λ) with the state transfer functions and output
function

δz0(z,x) = x0∨ z1x1 δz1(z,x) = z0x1x0∨ z1x1

λ (z,x) = z1x1∨ z0x1x0

will be executed. The machine before the transformation is
outlined in figure 29.

∧

∧

∧

∨

∨

∧

∧

∨

z0

z1

x1

x0

x1

x0

x1 x1

x0

x1

y

Figure 29: Automaton before the transformation

3.3.1 Design of δ z0

The KV-diagram of figure 31 will be lossless compacted
given by the pointers in the diagram to the diagram of fig-
ure 32.

www.astesj.com 169

http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

∧

∧

∧

∧

∧

∨

∨

∨

+

+

+

+

y

y

+

x0

x0

x1

x1

y

δ

µ

x0

x1

z0

z1

Figure 30: Resulting automaton

δz0 x0

x1

z0

z1

1 0 0 1

1 0 0 1

1 0 1 1

1 0 1 1

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

Figure 31: KV-diagram of δz0

δz0 x0

x1

z1

1 0 0 1

1 0 1 1

0 1 23

4 5 67

Figure 32: compacted KV-diagram of δz0

With the compacted KV-diagram the RS-buffer for δz0

can be coded by specifying the functions δ z0
and δ z0

, see
figure 33.

δ z0 x0

x1

z1

1 ∗ ∗ 1

1 ∗ 1 1

0 1 23

4 5 67

δ z0 x0

x1

z1

∗ 1 1 ∗

∗ 1 ∗ ∗

0 1 23

4 5 67

Figure 33: δ z0
and δ z0

State instable parts are not allowed in the state transfer
function:

z0δz0 ∧ z0δ z0 = (x0∨ z1x1)∧ (z1x0∨ x1x0) = 0

Now the resulting z0 can be calculated:

δ z0
(z,x) = z0δz0 ∧ z0δz0 = x0∨ z1x1

δ z0
(z,x) = z0δ z0 ∧ z0δ z0 = z1x0∨ x1x0

z0 : = δ z0
+¬(δ z0

)

z0 : = x0∨ z1x1 +¬(x1x0∨ z1x1)

www.astesj.com 170

http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

3.3.2 Design of δ z1

δz1 x0

x1

z0

z1

0 0 0 0

0 0 1 0

0 0 1 1

0 0 1 1

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

Figure 34: KV-diagram of δz1

For δ z1
the same approach applies. First the KV-diagram,

see figure 34, will be compacted:

δz1 x0

x1

z0

0 0 z1 z1

0 0 1 z1

0 1 23

4 5 67

Figure 35: compacted KV-diagram of δz1

Now the functions δ z1
and δ z1

can be deduced:

δ z1 x0

x1

z0

∗ ∗ 0 0

∗ ∗ 1 0

0 1 23

4 5 67

δ z1 x0

x1

z0

1 1 0 0

1 1 ∗ 0

0 1 23

4 5 67

Figure 36: KV-diagrams for δ z1
and δ z1

First δz1 is checked for instable parts:

z1δz1 ∧ z1δ z1 = z0x1x0∧ x1 = 0

No instable parts, so the RS-buffer can be coded for δz1 by
determining the functions δ z1

and δ z1
:

δ z1
(z,x) = z1δz1 ∧ z1δz1 = z0x1x0

δ z1
(z,x) = z1δ z1 ∧ z1δ z1 = x1

z1 : = δ z1
+¬(δ z1

)

z1 : = z0x1x0 +¬(x1)

3.3.3 Design of λ

The KV-diagram of λ can be seen in 37. Because of the
two-dimensional state, λ has to be divided into eight parts.

They exist as follows:

(z1,z0,y) (z1,z0,y)

(001) = A (001) = E

(011) = B (011) = F

(101) =C (101) = G

(111) = D (111) = H

λ x0

x1

z0

z1

0 0 0 0

1 0 0 0

1 0 1 1

0 0 1 1

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

Figure 37: KV-diagram of λ

The parts of λ are set up in the KV-diagram, see figure
38.

λ x0

x1

z0

z1

F E E F

B E G F

B E D D

F E D D

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

Figure 38: Parts of λ

The output functions y and y can be inferred from this:

y = A∨B∨C∨D

= z0x1x0∨ z1x1

y = E ∨F ∨G∨H

= x1x0∨ z1z0x0∨ z0x1x0∨ z1x1x0∨ z1z0x1x0

= x1x0∨ z1x1∨ z0x1

4 Test of Theory
To confirm the theory presented in the article, the state
transfer function of the one dimensional example was an-
alyzed making it a Medvedev. To simulate the circuit it was
modelled with NAND gates and simulated in LT-Spice. The
modeled NAND structure then was realized on the circuit
board and the output was captured via an oszilloscope. The
Medvedev machine (X ,Y,Z,δ ,1) with x = (x1,x0), y = (y)
and z = (z) with the state transformation function and out-
put function be given:

www.astesj.com 171

http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

The table and circuit:

z1 z0 x1 x0 δz1 δz0 δ z1
δ z1

δ z1
δ z0

δ z0
δ z0

λ A B C D E F G H y y y
0 0 0 0 0 0 1 ∗ 1 0 1 ∗ 1 0 ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 0
1 0 0 0 1 0 0 ∗ 1 0 ∗ 1 0 0 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 0
2 0 0 1 0 0 1 ∗ ∗ 0 1 ∗ 1 0 ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 0
3 0 0 1 1 0 0 ∗ ∗ 0 ∗ 1 0 0 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 0
4 0 1 0 0 0 1 ∗ 1 0 1 ∗ 1 1 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ 1
5 0 1 0 1 0 0 ∗ 1 0 ∗ 1 0 0 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 0
6 0 1 1 0 0 1 ∗ ∗ 0 1 ∗ 1 0 ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 0
7 0 1 1 1 1 0 1 ∗ 1 ∗ 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ 1 0
8 1 0 0 0 0 1 ∗ 1 0 1 ∗ 1 0 ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 0
9 1 0 0 1 0 0 ∗ 1 0 ∗ 1 0 0 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 0
10 1 0 1 0 1 1 ∗ ∗ 1 1 ∗ 1 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 ∗ 1
11 1 0 1 1 1 1 ∗ ∗ 1 1 ∗ 1 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 ∗ 1
12 1 1 0 0 0 1 ∗ 1 0 1 ∗ 1 1 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ 1
13 1 1 0 1 0 0 ∗ 1 0 ∗ 1 0 0 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 0
14 1 1 1 0 1 1 ∗ ∗ 1 1 ∗ 1 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 ∗ 1
15 1 1 1 1 1 1 1 ∗ 1 1 ∗ 1 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 1 ∗ 1

Table 4: Truth table of the transformed automaton

∧

∧

∧

∧

∨

∨

+

+

+

+

y

y

+

x0

x0

x1

x1

y

δ

µ

x0

x1

z0

z1

Figure 39: Resulting automaton

www.astesj.com 172

http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

δ (z,x) = zx0x1∨ x1

The KV-Diagramm:

δ x0

x1

z

0 0 1 1

0 1 1 1

0 1 23

4 5 67

Figure 40: KV-diagram of δ

The table:

z x1 x0 δ

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 5: Truth table of the automaton

The graph of the automaton:

0 1

x1

x1 x1∨ x0

x1x0

Figure 41: Graph of the automaton

NAND gates have been used to realize the structure.
Therefore the DNF was transformed into a NAND strucutre
by twice negating the DNF.

δ (z,x) = zx0x1∨ x1 = zx0x1∧ x1

∧
∧

x1

x1

x0
z

Figure 42: machine before the transformation

∧

∧

x1

x1
x0

z

Figure 43: Different view of the automaton

Figure 43 shows two asynchronous feedbacks, which can
lead to a race. On transition of x1 from logical 1 to 0, while
x0 stays on logical 1, the feedback, which is first on logical
0, will make the other to a stable logical 1. Therefore on
this transition, it can not be forecasted, whether the output
will be on logical 1 or 0.

∧

∧

x1
0→ 1

x1
0→ 1

x0
1
1

1
z

Figure 44: Race condition

∧

∧

x1
1

x1
1

x0
1
0

1
z

Figure 45: Race z = 0

∧

∧

x1
1

x1
1

x0
1
1

0
z

Figure 46: Race z =1

To simulate the race condition, the circuit was modelled
and simulated in LT Spice. The simulation shows a race.

Figure 47: Simulated race situation

www.astesj.com 173

http://www.astesj.com

M. Oezguel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 162-174 (2017)

The circuit was realized in reality and the race was
captured via an oscilloscope.

Figure 48: Race situation in reality
Then the transformation, which was presented in this

journal, was made leading to the following structure, which
does not have any contending feedbacks anymore. The only
feedback this structure needs is nested in the RS-Buffer.

∧

+

1
x1

x0

x1

z

Figure 49: Transformed Moore
This structure does not show a race problem. To prove

this statement the race condition of the old automaton has
been set to the inputs. In figure 50 the state z and the rising
edge of x1 is shown. It’s clearly to see that the state doesn’t
change, not even a fluctuation of the signal can be recog-
nized. Therefore the transformed machine is determined
and stable.

Figure 50: Race condition applied to the transformed au-
tomaton

5 Conclusion and Future Work
An asynchronous function stable Mealy was transformed
into a state stable Moore under the use of the RS-buffer with

suitable coding. The transformation provides general asyn-
chronous design rules, e.q. the isolation of critical situations
via the hold function. Due to the stabilisation by RS-buffer
with the hold function, no races will be propagated through
the circuit. In this journal three examples have been pre-
sented, a 1-dimensional and two 2-dimensional. Although
the stable 2-dimensional transformation has produced an
asynchronous feedback, this feedback leads either to a con-
firmation or a hold of the RS-buffer. The feedback has to
be seen as a starting condition which gets triggered by the
input and a change of the feedback will only affect the RS-
buffer if the input changes. This design guideline can be
used for all circuit designs, to create a stable, reliable sys-
tem. The goal of the design is to remove the outer feedback
and nest it in the RS-buffer. The inputs have been coded as
pseudo states and stabilized via the RS-buffer. The output
function has also been designed in dual-rail. This leads to
a circuit, that looks at first sight as a combinational circuit.
With this method you can simplify complex automata and
combine them. The results have to be simulated to get a de-
tailed look at the behavior of the transformed Moore. As it
was shown, one dimensional machines get stabilized by this
design, but for more dimensional machines it is necessary
to design stable functions and regard the transitions between
the states, not only concentrating on one state. So a rule has
to be found, which can check for instabilities between states
and stabilize machines in these constellations. Additionally
the formula for the Transformation can be programmed, to
create an automated process of transformation. Addition-
ally the output function λ has to be checked for functional
Hazards and addapted to guarantee that they are no longer
existing.

References
[1] Birtwhistle, G.: Davis, A.: Asynchronous Digital Circuit Design,

Springer London, 1995

[2] Van Berkel, K.: Burgess, R.: Kessels, J.L.W.: Peeters, A.: Roncken,
M.: Schalij, F.: A fully asynchronous low-power error corrector for
the DCC player, IEEE J. Solid-State Circuits, vol. 29, Dec. 1994. -
P. 1429-1439

[3] Uygur, G.: Sattler, S.M.: A Real-World Model of Partially Defined
Logic. 12th International Workshop on Boolean Problems 2016,
Freiberg

[4] Mokhov, A.: Khomenko, V.: Sokolov, D.: Yakovlev, A.: On Dual-
Rail Control Logic for Enhanced Circuit Robustness, ACSD ’12 Pro-
ceedings of the 2012, 12th International Conference on Application
of Concurrency to System Design, Pages 112-121, June 27 - 29,
2012, IEEE Computer Society Washington, DC, USA

[5] Shirvani, P.: Mitra, S.: Ebergen, J.: Roncken,M.: DUDES: a
fault abstraction and collapsing framework for asynchronous cir-
cuits, in Advanced Research in Asynchronous Circuits and Systems
(ASYNC), Proceedings, Sixth International Symposium on, 2000,
pp. 73–82

[6] Özgül, M.: Deeg, F.: Sattler, S.M.: Mealy-to-Moore Transforma-
tion, 20th IEEE International Symposium on DDECS 2017, Dresden

www.astesj.com 174

http://www.astesj.com

	Introduction
	Theory
	Dual-rail logic
	RS-Buffer
	Design of the reduced state transfer function
	Design of the output function

	Use-Case
	1-dimensional example
	Design of
	Design of

	2-dimensional example
	Design of z0
	Design of z1
	Design of

	Stable 2-dimensional example
	Design of z0
	Design of z1
	Design of

	Test of Theory
	Conclusion and Future Work

